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Lung clearance and retention of spherical
particles was substantially quantified by the
comprehensive model published by the
Task Group on Lung Dynamics in 1966
(1). The model postulated that alveolar
clearance involved multicompartmental lin-
ear processes. In the ensuing three decades,
these underlying assumptions have been
challenged by numerous investigations that
point to nonlinear behavior of clearance as a
function of lung burden. In particular,
recent models of pulmonary retention and
clearance of dusts have focused upon three
nonlinear processes, namely, sequestration,
overloading, and redistribution.

Sequestration, first recognized by
Soderholm (2), describes a phenomenon
whereby the alveolar clearance of very large
lung burdens essentially ceases. This concept
has been used to explain the clearance and
retention behavior of diesel exhaust particles
(DEP) (3-5), carbon black (CB) (6), quartz
(7), titanium dioxide (7), photocopy test
toner (PTT) (7), and amosite fibers (8).
However, because the characteristics of par-
ticle sequestration have not been fully eluci-
dated, various types of models have been
used to account for the phenomenon. For
example, some investigations considered
sequestration to be a process in which clear-
ance ceased completely (3,4,8-11), while
others regarded clearance as being merely
very slow (5-7,12), or not applicable in
cases involving low exposure (13).

Dust overloading, hypothesized first by
Bolton et al. (14) and subsequently by
Morrow (15,16), is a phenomenon in

which the lung maintains its normal clear-
ance rate until the burden reaches a thresh-
old, whereupon clearance progressively
slows. This phenomenon is based upon
empirical observations that, above such a
threshold, the alveolar clearance of exposed
animals becomes significantly slower than
those of control groups. As a result, com-
partmental models have included threshold
values that defined the transition from nor-
mal to overloading conditions (5,9,10).

Finally, particle redistribution is a
dynamic feedback process in which phago-
cytized particles are released from dying
alveolar macrophages (AMs) into the alveo-
lar space where they are rephagocytized by
newly recruited AMs. This feedback
process has been demonstrated in various
experiments (17-19) and has been incorpo-
rated into recent retention models (20-26).

Because clearance and retention models,
which explicitly account for sequestration,
overloading, and/or redistribution, have
become increasingly complex, we propose
herein an alternative nonlinear model based
upon Michaelis-Menten (MM)-like kinet-
ics. This model is consistent with the treat-
ment by Smith (12), who implicidy recog-
nized the appropriateness ofMM-like kinet-
ics for alveolar clearance. We previously pre-
sented the rationale underlying the clear-
ance portion of this model and developed a
linear relationship between pulmonary
clearance half-time and lung burdens to
evaluate the fit of the model to published
data of PTT, antimony trioxide (Sb203),
DEP, and polyvinyl chloride powder (27).

To further validate the full nmodel (including
both accumulation and elimination phases),
we tested the model predictions of the tem-
poral behavior of lung burdens, which were
experimentally determined in a variety of
inhalation studies in F344 rats.

Materials and Methods
Materials. We selected published data
involving lung burdens measured over time
in F344 rats exposed to Sb2O3 (29), PTT
(8,30), CB (6), and DEP (4,5,31) by inhala-
tion at various concentrations in either sub-
chronic (12-18-week) or chronic (24-
month) studies. Table 1 summarizes the
protocols of these inhalation experiments.
Note that some investigations studied only
dust accumulation (4,8), some only elimina-
tion (6,31), and others both accumulation
and elimination (5,29,30). These studies
involved particles of both large diameters
[PTT, mass median aerodynamic diameter
(MMAD)= 4 pm; Sb203, MMAD = 3.5
pm] and small diameters (DEP, MMAD =
0.19-0.25 pm; CB, MMAD = 0.24 pm), as
well as dusts of various densities (5.2 g/cm3
for Sb20, 2 g/cm3 for DEP and CB, and
1.2 g/cm for PTT).

Lung retention model. Insoluble parti-
cles are deposited in various portions of the
rat lung and cleared by several mechanisms.
Relatively large particles are likely to be
deposited in the conducting airways and are
then removed rapidly (over a period of
hours to a few days) by mucociliary clear-
ance. Smaller particles tend to be deposited
in the alveoli and are then cleared predomi-
nately by AMs, which phagocytize the parti-
cles and transport them to the ciliated
epithelium. A secondary mechanism for
clearance in the deep lung involves transport
to lung-associated lymph nodes, possibly
mediated by AMs or via direct penetration
of particles through the interstitium.
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Because these clearance mechanisms in the
deep lung are relatively slow (working over
a period of weeks to months), the vast
majority of the total lung burden resides in
the alveolar region following chronic expo-
sure to insoluble dusts. Thus, our model
treated the rat lung as a single compartment
consisting exclusively of the pulmonary
region (the alveoli and the supporting struc-
tures) and ignored a separate compartment
for the tracheobronchial region, which con-
tributes relatively little to the total lung bur-
den (4). Experimental data reporting bur-
dens of dusts in lung-associated lymph
nodes were not used for testing our model.

In keeping with our earlier treatment of
MM-like clearance (2/), we defined the pul-
monary clearance rate coefficient k =
ln(2)/1T/2, where T112 is the clearance half-
time for each dust, according to the follow-
ing relationship:

k m
k max 1/2

1/2 (l)

where kmax represents the maximum rate
coefficient of pulmonary clearance, m1/2
represents the characteristic burden at
which k= 1/2- k~ ,and m represents the
lung burden at which k is evaluated.

During the accumulation phase, when
rats are continuously exposed to dust
according to a particular exposure regimen
[e.g., 30 hr/week for 13 weeks in the study
by Newton et al. (29)], particles accumu-
late in the lung during the period of daily
exposure (e.g., 6 hr), and the mass balance
governing the lung burden is given by

dm =V .E .x-k.m (2)
dt t A

where Vt is the ventilation rate (a function
of the animal's age), EA is the particle
deposition efficiency, and x is the exposure
concentration. Immediately following daily
exposure, the lung reaches the initial post-
exposure burden, designated mo. During
the period prior to the next daily exposure
(e.g., 18 hr), the burden is cleared accord-
ing to the following relationship:

dmnd=--k m (3)
dt

Table 1. Inhalation experiments involving measurements of lung burden over time in F344 rats

MMAD Specific Phase of Exposure Exposure
Dust (pm) density Sex study concentration (mg/m3) regimen Reference

Sb203 3.5 5.2 M & Fa Accumulation 0.25,1.08, 30 hr/week for 13 weeks (29)
4.92, 23.46

Elimination NE - (29)
PTr 4 1.2 M & Fa Accumulation 1,4,16.1,63.2 30 hr/week for 90 days (30)

Elimination NE - (30)
PTT 4 1.2 M & Fa Accumulation 1,4,16 30 hr/week for 24 months (9)
CBb 0.24 2 M Elimination 6.4, 7.1, 6.7c 140 hr/week for 12 weeksc (6)

DEP 0.21 2 M & Fa Elimination 0.15,0.94, 35 hr/week for l8weeksc (31)
4.1c

DEPd 0.19 2 M Accumulation 5.91 140 hr/weekfor 12weeks (5)
Elimination NE (5)

DEP 0.25 2 M & Fa Accumulation 0.353,3.47, 35 hr/week for 24 months (4)
7.08

Abbreviations: MMAD, mass median aerodynamic diameter; Sb203, antimony trioxide; M, males; F,
females; NE, no exposure; PTT, photocopy test toner; CB, carbon black; DEP, diesel exhaust partiulate.
aCombination of both males and females.
bAgglomerated particles (primary size = 0.07 pm).
cConcentrations and regimen were used to build up lung burdens.
dAgglomerated particles (primary size = 0.04 pm).

Equations 3 and 1' are also applicable dur-
ing the weekends and after termination of
exposure; the latter will be referred to here-
after as the elimination phase. Note that
when particles are not deposited in the
lung, k (in Equation 1') is a function of mo
and is independent of the postexposure
time. Values of m were estimated during
the accumulation and elimination phases
by numerically integrating Equations 2 and
3, as described in Appendix A.

Estimation of model parameters. The
parameters to be estimated under the
model, defined by mass balance Equations
2 and 3, are Vt, EA, kmax' and mi112
Because Vt depends on the ages of the ani-
mals and, in part, on the particular labora-
tory where each inhalation study was con-
ducted, we attempted to match the method
of estimation to the published data as
closely as possible. For the study by Strom
et al. (5), we used the following function
reported by the same authors (6) for male
F344 rats:

Vt (ml/min) = 278e-ln(2)(93)/t, (4)

where t is the animal's age in days.
Likewise, for the later study from the same
laboratory (6), we used a similar relation-
ship reported by the authors:

Vt(ml/min) = VMe-In(2)(50)/t (5)

respectively, so that postexposure ventila-
tion rates would correspond exactly to the
reported values. In other studies, ventila-
tion rates were not reported, so we used the
published relationship of Guyton (32)
between V, and body weight (bw) in grams,
at age tin days:

Vt (ml/min) = (2.1) (bw)0 75. (6)

For the study by Newton et al. (29), body
weight was estimated for male F344 rats
from the following relationship given by
Strom et al. (5) because it corresponded well
to the published body weight curves of
Newton et al. (29):

bw (g) = 460e-n(2)(1O4)/t (7)

For female rats in the same study (29), the
body weight from Equation 7 was adjusted
by a factor of 84.5%, representing the esti-
mated ratio of the average body weight of
7-week-old female rats to the correspond-
ing males. Finally, for the studies by Wolff
et al. (4), Bellmann et al. (9), Muhle et al.
(30), and Griffis et al. (31), we estimated
body weights from the following relation-
ships published by Bellmann et al. (8):

bw (g) = 143 + (46.6)ln(t) (8)

for male rats, and

where VM represents the maximum ventila-
tion rate. Since postexposure ventilation
rates were reported to be 117, 123, and
154 ml/min among animals of the 1-week,
3-week, and 41-day groups, we adjusted

(1 ) VM to values of 217, 202, and 227 ml/min,

bw (g) = 38 + (42.5)ln(t) (9)

for female rats.
The MM-like parameters were estimat-

ed from the following relationships given
by Yu and Rappaport (27):
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Table 2. Particle deposition efficiencies used to fit
Michaelis-Menten (MM)-like retention models

Range of Source of
particle data used to fit

deposition the MM-like
Dust efficiency (%) retention model

Sb203 4.1-8.8 Newton et al. (29)
PiT 2.5-5.7 Muhle et al. (30)
PTT 2.8-4.1 Bellmann et al. (9)
CB 11-18 Strom et al. (6)
DEP 8-12 Griffis et al. (31)
DEP 11-15 Wolff et al. (4)
DEP 28-30 Strom et al. (5)

Abbreviations: Sb203 antimony trioxide; PTT, pho-
tocopy test toner; C6, carbon black; DEP, diesel
exhaust particulate.

23.4 gg/M3 * 4.92 jg/rm3 A 1.08 jg/M3 9 0.25 jg/M3

0.001

100.001 0.01 0.1

Observed lung burden (mg)

Figure 2. Overall comparison of model predictions and experimental data of Sb203 observed by Newton
et al. (29).

0 6 12 18 24 30 36 42

Time (weeks)

Figure 1. Accumulation and elimination of Sb203 in
F344 male (A) and female (B) rats in a subchronic
study by Newton et al. (29). Solid lines represent
model predictions; symbols represent experimen-
tal data. (The Michaelis-Menten-like clearance
parameters for the model were estimated from the
elimination phase of the same study.)

kmax= ln(2)/a (10)
and

M/2 (11)

where a (common to all dusts) and , (spe-
cific to each dust) are, respectively, the esti-
mated values of the intercept and slope of
the linear relationship between T1/2 and
lung burden. The rationale for development
of this linear relationship was discussed pre-

viously (27). From Equations 10 and 11,

kmax was estimated to be 0.009/day for
F344 rats (27) and ml/2 was estimated to be
0.69 mg for Sb203 [reported by Yu and
Rappaport (27) from data of Newton et al.
(29)], 0.97 mg for PTT [reported by Yu
and Rappaport (27) from data of Muhle et

al. (30)], 2.49 mg for DEP [reported by Yu

* 63.2 mg/m3 * 16.1 mg/m3 U 4.0 mg/m3 A 1.0 mg/m3

0U
..... .......

-a

_0.01

0.0 50 100
Time (days)

Figure 3. Accumulation and elimination of photo-
copy test toner in F344 female rats exposed for 90
days in a subchronic study by Muhle et al. (30).
Solid lines represent model predictions; symbols
represent experimental observations. (The
Michaelis-Menten-like clearance parameters for
the model were estimated from the elimination
phase of the same study.)

and Rappaport (27) from data of Griffis et

al. (31)], and 1.11 mg for CB [estimated in
this study from data of Strom et al. (6)].
Note that values of m1/2 were derived from
data obtained exclusively from the elimina-
tion phase of each experiment and that for
PTT and DEP, values of m1/2 that were

estimated from one study were applied to

other studies involving the same dust.
Finally, EA was determined empirically

for each experimental data set [by experi-
mental group, dust, exposure concentra-

tion, duration (if applicable), and gender
(if applicable)] by fitting Equations 2 and 3
to the data after including all other terms

in the model. Table 2 shows the estimated

ranges of EA for each of the data sets for the
various experimental groups.

Results
Antimony trioxide. Newton et al. (29)
investigated both accumulation (for 13
weeks) and elimination (for an additional
28 weeks) of Sb2O3 in rats exposed to four
exposure concentrations in a subchronic
inhalation study. Figure 1 shows accumula-
tion and elimination of the dust over time
in male (Fig. 1A) and female (Fig. 1B) rats
using values of km. and mI/2 that were esti-
mated from the elimination phase of the
same study. The model predicted the
behavior of all experimental data quite well.
Furthermore, the residuals were found to be
unremarkable with no apparent gender
effect on model predictions (Fig. 2).

Photocopy test toner. Muhle et al. (30)
investigated PTT accumulation (up to 90
days) and elimination (for an additional 75
days), whereas Bellmann et al. (8) exam-
ined only accumulation of PTT (for 24
months). Figure 3 depicts the predicted
and observed burdens in female rats
exposed to different dust concentrations,
Figure 4 shows the burdens in males
exposed to various concentrations of PTT
in the study by Muhle et al. (30), and
Figure 5 shows the results from the study
by Bellmann et al. (8). In each case, kmax
and m1/2 were estimated from the elimina-
tion phase of the study by Muhle et al.
(30). These results indicate good fits of all
data to the model, with the possible excep-
tion of the data from Muhle et al. (30) at
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Figure 7. Experimental observations (mean ± SD)
on the elimination of diesel exhaust particulate
from the lungs of F344 rats in a study by Griffis et
al. (31). Solid lines represent model predictions.
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Postexposure (days) nation phase of the same study.)

0.0

Figure 4. Elimination of photocopy test toner in F344 male rats exposed to 63.2 mg/m3 (A), 16.1 mg/m3 (B),
4.0 mg/m3 (C), and 1.0 mg/m3 (D) in a subchronic study by Muhle et al. (30). Solid lines represent model
predictions; symbols represent experimental observations. (The Michaelis-Menten-like clearance para-
meters for the model were estimated from the elimination phase of the same study.)
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Figure 5. Accumulation of photocopy test toner in
F344 female (A) and male (B) rats in a chronic
study by Bellmann et al. (9). Solid lines represent
model predictions; symbols represent experimen-
tal data. [The Michaelis-Menten-like clearance
parameters for the model were estimated from the
elimination phase of the study by Muhle et al. (30).]

the lowest concentration (Fig. 4D). Again,
no effect on model fit by gender was

observed (data not shown). The model,
given the kmax and min/2 estimated from the
elimination phase, accurately predicted the
burdens during the accumulation and elim-
ination phases in the same study by Muhle
et al. (30). Furthermore, the parameters
estimated from the study by Muhle et al.
(30) accurately predicted lung burdens dur-
ing the accumulation phase of the study by
Vincent et al. (8), suggesting that the MM-
like clearance parameters were valid
between phases and between studies.

Carbon black. Strom et al. (6) investi-
gated elimination ofCB for 1 year following

60 120 180 240 300 360

Time (days)

Figure 6. Experimental observations (symbols) on
the elimination of carbon black from the lungs of
F344 male rats in a study by Strom et al. (6). Solid
lines represent model predictions. (The
Michaelis- Menten-like clearance parameters for
the model were estimated from the elimination
phase of the same study.)

accumulation of a range of burdens in male
F344 rats exposed at about 7 mg/m3 for
7-41 days. Results are shown in Figure 6,
using values of kmaX and mI/2 that were esti-
mated from the same study. The overall fit
of the model was good, despite some under-
estimation of lung burdens at early stages
(<60 days) of the experiment in which the
animals were exposed for 7 days.

Diesel exhaust particle. Three studies
involved inhalation of DEP: Griffis et al.
(31) investigated only elimination; Wolff
et al. (4) studied only accumulation; and
Strom et al. (5) examined both accumula-
tion and elimination. Figures 7-9 depict
these data and the corresponding model
predictions where values of kma, and mI/2
were estimated from the study of Griffis et

al. (31). Again, the model predictions

0.1

0.01
U 3 1U 13 2U 25

Exposure time (months)

Figure 8. Accumulation of diesel exhaust particu-
late in F344 rats in a chronic study by Wolff et al.
(4). Solid lines represent model predictions; sym-
bols represent experimental observations. [The
Michaelis-Menten-like clearance parameters for
the model were estimated from the elimination
phase of the study by Griffis et al. (31).]

compared favorably with the data. The
parameters kmax and ml1/2, which had been
estimated from the elimination phase of
the study by Griffis et al. (31), were valid
in predicting burdens in both the accumu-

lation and elimination phases of all stud-
ies. However, the model tended to under-
estimate burdens at later stages of the
experiments (1 year after termination of
exposure).

Discussion
As noted in the introduction, investigators
have long sought to develop an accurate

model for the retention of insoluble parti-
cles in the lung. Indeed, many retention
models have been published for the rat lung
which, as shown in Table 3, contain varying
numbers of compartments (1-7) and clear-
ance-related parameters (3-13). As compu-
tational power and speed have improved,
complex physiologically based models have
become increasingly popular because they
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E
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ance-related parameters, kma and m1/2* We
previously showed that kmax and mi1/2 are

easily estimated and evaluated by applying
simple linear regression techniques to mod-
est amounts of clearance data (27). We
regard this as a particular strength given the
sparseness of data that can currently be used
to assess the fit of any dust-retention model.

Despite its simplicity, our model reason-

ably described the mass-dependent behavior
of lung burdens in rats exposed to four dusts
(Sb203, PTT, CB, and DEP) over a wide

25

20

15

10

100 200 300 4000

Time (days)

Figure 9. Experimental observations (symbols) on the accumulation and elimination of DEP in the lungs
of F344 male rats in a study by Strom et al. (5). Solid lines represent model predictions. [The
Michaelis-Menten-like clearance parameters for the model were estimated from the elimination
phase of the study by Griffis et al. (31).]

Table 3. Comparison of models used to simulate accumulation and clearance of dusts in the rat lung

Dust retention
Retention model Number of No. of data used to
proposed by compartmentsa parametersaob validate the model

This study 1 2 DEP, PTT, CB, Sb203

Katsnelson et al. (23,25) 6 12-13 SiO2, TiO2

Smith (12) 5 7 SiO2

Stober et al. (10,21) 7 8-13 DEP, PTT, CB

Strometal.(5,6,13) 3-4 3-6 DEP,CB
Vacek et al. (22) 2c 3C SiO2
Vincent et al. (8) 3-4 4-5 Asbestos fibers

Yu et al.(45) 1 4 Asbestos fibers

Yu et al. (46) 2 9 DEP

Abbreviations: DEP, diesel exhaust particulate; PTT, photocopy test toner; CB, carbon black; Sb203 anti-
mony trioxide; SiO2, crystalline silica; TiO2, titanium dioxide.
aExcluding the lymphatic compartment.
bExcluding parameters associated with particle deposition.
cThe overall model suggested by Vacek et al. (22).

range of particle sizes and experimental pro-
tocols. Thus, we conclude that MM-like
kinetics captured the essential features of sat-

urable AM-mediated clearance, which large-
ly governed both the accumulation and
elimination of lung burdens in inhalation
studies involving insoluble dusts.

During the accumulation phase of
inhalation experiments, our model relies
upon an empirically derived constant (EA)
to account for the efficiency of particle
deposition in the lung. The ranges of EA
that we obtained were generally consistent
with published values obtained from rats

exposed to a variety of aerosols, including
aluminosilicate (4,36,37), DEP (38,39)
[note that 66% of lung deposition was

assumed to be in the alveolar region (39)],
Ga203 (4,40,41), PuO2 (42), U 08 and
U02 (43), and an 198Au labeled aerosol
(44). We included monodisperse particles,
characterized by their aerodynamic diame-
ters (36,37) as well as polydisperse aerosols
characterized by their MMADs (4,38-43).
As shown in Figure 10, these published val-
ues of EA displayed a decreasing trend with
increasing size from about 20% for 0.1-pm
particles to about 1% for 7-pm particles. All
fits produced values of EA within the range

of those observed from experimental stud-
ies, with the exception of the fit of our

model to the data from Strom et al. (5),
where the estimated values of EA ranged
from 28 to 30% for DEP particles, with an

MMAD of 0.19 pm. These values, howev-
er, were very similar to those reported by
Strom et al. (26.5-38%) (5,6) and Stober
et al. (28.3%) (10). Thus, we conclude that
the values of EA that we assigned to the var-

ious experimental groups should not have
unduly influenced the behavior of our

model predictions.
The validity of MM-like kinetic models

is considered from three perspectives. First,
reasonable agreement is to be expected
between model predictions and observed
lung burdens when the same data are used
to estimate the clearance-related parameters
and also to evaluate goodness of fit (as for
Sb2O3 in Fig. 1, for PTT in Fig. 3,4, for
CB in Fig. 6, and for DEP in Fig. 7).
Second, all of the pairs of kmax and mI/2
that were used to define clearance rate coef-
ficients for the four dusts were obtained
from the elimination phases of inhalation
experiments after exposure had been termi-
nated. Yet, we observed excellent agreement
between observed lung burdens and model
predictions during the accumulation phases
of all experiments as well (Fig. 1,5,8,9).
Third, more validity can be given to a

model in which parameters estimated from
one study successfully predict lung burdens
from another, as was the case for PTT (Fig.
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offer avenues for explaining the behaviors
observed. However, in the absence of par-
ticularly rich and varied data resources,
questions of accuracy tend to plague such
highly parameterized models. Thus, when
data are sparse, simple empirical models
offer advantages for the accurate prediction
of kinetic behavior, even if the reasons for
such behavior remain elusive. Certainly our
model (defined by Equations 2 and 3) falls
into this latter category because it contains
only a single compartment and two clear-
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5) and DEP (Fig. 8,9). Such agreement of
model predictions across studies for two dif-
ferent dusts strengthens the notion that
MM-like clearance behavior may be gener-
ally applicable to insoluble particles.

We suspect that the parsimony achieved
by applying MM-like kinetics to alveolar
clearance relates to its underlying biological
plausibility. Table 4 compares the main
characteristics of traditional MM enzyme
kinetics to the analogous process that we
postulate to be operative in the lung. The
key feature leading to the mathematical
forms of both relationships rests in the
inherent feedback systems, which are related
to dissociation of enzyme-substrate complex
on the one hand and to redistribution of
phagocytized particles (associated with the
deaths of AMs) on the other. Although the
concept of particle redistribution has long
been recognized and has often been includ-
ed in retention models (10,20,22-25), we
are apparently the first to recognize the par-
allel between redistribution and dissociation
of the enzyme-substrate process and, there-
by, to justify the mathematical simplicity of
MM kinetics in this context.

The MM-like kinetics that underlie our
model also lend substance to the notion of
lung overload, where it is postulated that
the clearance rate slows only after some
critical threshold burden has been exceed-
ed. From Equation 1 it is easily shown that
when m << ml/2, linear (or first-order)
kinetics prevail and the alveolar clearance
rate coefficient k is approximately equal to
kmax. Thus, the threshold burden is defined
by the condition where m << m112.
Previously (27), we estimated threshold
burdens of 0.11, 0.16, 0.40, and 0.46 mg
for Sb2O3, PTT, DEP, and polyvinyl chlo-
ride powder, respectively (whose values of
mI/2 were estimated to be 0.69, 0.97, 2.49,
and 2.90 mg, respectively). This implies
that lung overload occurs when the lung
burden exceeds about 16% of m1/2. The
good fits of all experimental data to our
model underscore the point that dust over-
loading is probably a manifestation of non-
linear kinetics of the MM type according
to the relationship given in Equation 1.

Our model can also be interpreted in
the context of particle sequestration, where
it has been postulated that clearance stops
completely for some portion of the lung
burden (15,16). Yu et al. (35) argued that
particle sequestration can be explained in
practice by the effect of slowed alveolar
clearance rather than a complete break-
down of the clearance process, given that
animals have a finite lifetime. Our model
offers a similar explanation in the sense
that alveolar clearance, under Equation 1,
is mass-dependent and, in the extreme, will
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Figure 10. Model-fitted (open symbols) and other published empirical values of pulmonary deposition effi-
ciency of various particles in rats. MMAD, mass median aerodynamic diameter; DEP, diesel exhaust par-
ticulate; CB, carbon black; PTT, photocopy test toner.
aMMAD = 0.1-4.18 pm [data from Raabe et al. (36,37)].
bMMAD = 2 pm [data from Wolff et al. (4)].
CMMAD = 0.125 pm [data from Chan et al. (38)] and MMAD = 0.23 and 0.27 pm [data from Dutcher et al. (39)].
dMMAD = 0.25 pm [data from Wolff et al. (4,40,41)].
9MMAD = 1.7-3.6 pm [data from Craig and Buschbom (42)].
fMMAD = 7.02 pm (U308d and MMAD = 1.62 pm (UO2) [data from Stokinger et al. (43)].
9MMAD = 0.78 pm [data from McMahon et al. (44)].

Table 4. Traditional Michaelis-Menten (MM) enzymatic kinetics versus the MM-like kinetics of alveolar
clearance of dusts

Characteristics Enzyme kinetics MM-like kinetics of dusts
Two-stage process Substrate Free particles

Enzyme AM
ES Phagocytized particles
Reaction product Cleared particles
Enzyme recyling Continuous supply of AM

from bone marrow
Feedback system ES dissociation Particle redistribution
Overall kinetics Saturable, nonlinear Saturable, nonlinear
Kinetic variable v, rate of enzymatic reaction k, alveolar clearance rate coefficient
Kinetic parameters Vmax, maximal rate of enzymatic reaction kmax, maximal alveolar clearance

rate coefficient
km, substrate concentration at MM12, lung burden at which the
which the rate is half of Vmax clearance is half of kmax

Kinetic equation k - mmax[s] k-max 1/2
km + IS] m 1/2 +m

Pseudo-linear [S] << km, leading to v (Vmaxlkm)*[S] m< 1/2, leading to k-kmax
condition
Parameter estimation Linear regression, e.g., Linear regression, T12 = a+ Pim, for

Lineweaver-Burk method kmax ln(2)//a and m1a2=lapf3
Abbreviations: S, substrate; E, enzyme; AM, alveolar macrophages; ES, enzyme-substrate complex.
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lead to radically diminished clearance rate
coefficients. Thus, although conceptual dif-
ferences remain in defining particle seques-
tration, in practice there is not much dif&
ference between our approach and that of
Yu et al. (35). We also note that the most
consistent bias observed between predicted
and observed burdens under our model
involved the underestimation of burdens of
DEP (Fig. 9-1 1) during late stages of the
experiments (times greater than about 1
year), where sequestration would be expect-
ed to play a more prominent role.

We conclude that MM-like clearance
kinetics provide a reasonable basis for a
general model describing the retention of
insoluble particles in the lungs of F344
rats. We encourage others to investigate the
suitability of our model for describing
retention of other aerosols in the rat lung as
well as for describing the behavior of insol-
uble dusts deposited in the lungs of other
species, including humans.
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